1500

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Do you suspect a release (see Surface Water Pathway Criteria List, page 11)?

Site Name: Flags Inc Date: 7/24/91

NOV 06 1990

Distance to surface water:

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics

	Flood Frequency: What is the downstream distance to the hearest drinking-water intake? Mathematical Mathema	·_miles es	>500 11s	
		A	8	
LIK	ELIHOOD OF RELEASE	Suspected Release	No Suspected Release	References
1.	SUSPECTED RELEASE: If you suspect a release to surface water (see page 11), assign a score of 550, and use only column A for this pathway.	1608	500 e00.200 er 100	
2.	NO SUSPECTED RELEASE: If you do not suspect a release to surface water, and the distance to surface water is 2,500 feet or less; assign a score of 500; otherwise, assign a score from the table below. Use only column 8 for this pathway.		,	
•	Floodplain Score Site in annual or 10-yr floodplain 500 Site in 100-yr floodplain 400 Site in 500-yr floodplain 300 Site outside 500-yr floodplain 100		5.00	
	LR -	100	500	
	Determine the water body types, flows (if applicable), and number of people served by all drinking-water intakes within the 15-mile target distance limit. If there are no drinking-water intakes within the target distance limit, assign a total Targets score of 5 at the bottom of this page (Resources only) and proceed to page 14. Intake Name Water Body Type Flow People Served			
4.	PRIMARY TARGET POPULATION: If you suspect any drinking-water intake listed above has been exposed to hazardous substances from the site (see Surface Water Pathway Criteria List, page 11), list the intake name(s) and calculate the factor score based on the number of people served.			
5	SECONDARY TARGET POPULATION: Determine the Secondary Target Population score from PA Table 3 based on the populations using drinking-water from intakes that you do NOT suspect have been exposed to hazardous substances from the site.			
	Are any intakes part of a blended system? Yes No V	18.78.19.21. # 0	(20,10,11, 2 4	
6	NEAREST INTAKE: If you have identified any Primary Targets for the drinking water threat (Factor 4), assign a score of 50; otherwise, assign the Nearest Intake score from PA Table 3. If no drinking-water intake exists within the 15-mile target distance limit, assign a score of zero.		0	
	7. RESOURCES: A score of 5 is assigned.	5	5 5	
				7

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE Site Name: 7/475 Znc Date: 4/24/91

NOV 06 1990

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

LIKELIHOOD OF	F RELEASE		Suspected	Na Suspected	
			Release	Release	Palarenc
inter the Surface V	Water Likelihood of Release) 503	.500,400,300 e 100)	
	Acc. Exemined of Release	score from page 12. LR =		500	
HUMAN FOOD	CHAIN THREAT TARGE	TS .			
Er enmie ta	irget distance limit. If there assign a Targets score of O	s (if applicable) for all fisheries within are no fisheries within the target at the bottom of this page and			
Fishery Name)	Water Body Type Flow			
Rig T	mha = C	C 11	iii.	1	
	are River	Creek 610 cts		I	
Delaws	are River	estuary N/A cts			
		cf s			
		cfs			
		cfs	the stands of	1 1	
to hazardous :	substances from the site (se	fishery listed above has been exposed the Surface Water Criteria List, page 11), a Factor 10. List the Primary Fisheries:		e de la companya de l	
assign a Seco	FISHERIES: If you have not indary Fisheries score from the 15-mile target d	t identified any Primary Fisheries, the table below using the LOWEST flow istance limit,	1210,39,12 w as	i210,330,12, ar va	
	Lowest Flow	Secondary Fisheries Score			
	< 10 cts	210		12.	
	10 to 100 cfs	30		210	
•	> 100 cfs. coastal			1	
	tidal waters, oceans,	12	1		
	or Great Lakes				
			(339.310.30.12 a ts	1 _	
•		Τ.	•	910	1
					-

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: F/493 Fnc Date: 4/04/91

NOV 0 6 1990

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

				A	8	
LIKELIHOOD OF RE	LEASE			Suspected	No Suspected	
nter the Surface Water	r Likelihood of Release			Release	Release	Refer
	- The mood of Helease	score from page 12.	LR =		500	
NVIRONMENTAL	THREAT TARGETS					
1. Determine the water	er book byeen and the					
	CITE OF THE PROPERTY OF THE PR	target distance limit (se				
					1	
page 17.	ets score of 0 at the bo	ittom of this page, and p	raceed to			
Environment Name						
2		Water Body Type	Flow			
Politica	exested wether	S CREK	4/0 cts	Magazine		
FAIOSITINE	Emergent Wetly	nds creek	<10 cts			
"Riverine	JeHund (esourg	N/A cfs			
			cfs			
			cf s			
A. For Secondary S	ITIVE ENVIRONMENTS Sensitive Environments assign scores as follow	: on surface water bodies rs. and do not evaluate p	with flows of sert 8 of			
Flow	Oilution Weight	Environment Type and	1 1 1			
∠ 10 cfs		IPA Tables 5 and 6	70tal			
cfs	x	<i>~</i> 5				
cfs	XI				25	
cts	X I					
cfs	X					
	X X		=1			
			Sum =	(1 0 = 6	` 0 = 0 \$	
B. If NO Secondary	Sensitive Environment	s are located on surface	water bodies	,,,,,,,,		
With hows of (00 cfs or less, assign a	score of 10.				
					25	
			T =		25	

CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: Flags Inc

Date: 4/24/91

PA TABLE 5: SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

Sensitive Environment	Assigned Value
Critical habitat for Federally designated engangered or threatened species	100
Aenne Sanctuary	
lational Perk	
esignated Federal Wilderness Area	
cologically important ereas identified under the Coastal Zone Wilderness Act	
ensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean W	leter Act
Critical Areas Identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire s	meli iakes)
National Monument	
National Seashore Recreation Area	
National Lakeshore Recreation Area	
debitat known to be used by Federally designated or proposed endangered or threatened species	75
National Preserve	
National or State Wildlife Refuge	
Unit of Coastal Berner Resources System	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas chitical for the maintenance of fish/shellfish species within a river system, bay or setuary	
Migratory pathweys and feeding areas critical for the maintenance of anadromous fish species in a river sys	item
Terrestrial areas utilized by large or dense aggregations of vertebrate animals (semi-equatic foragers) for bro	eeding
National river reach designated as recreational	
Habitat known to be used by State designated endangered or th extende species	50
Habitat known to be used by a species under review as to its Federal endangered or threatened status	
Coastal Berner (pertially developed)	
Federally designated Scenig or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection/maintenance of aquatic life under the Clean Water Act	5
See PA Tabl	e 6 (Surface Water Pathway
Wetlands	or _
PAT	Table 9 (Air Pathway)

PA TABLE 6: SURFACE WATER WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value
Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater then 2 to 3 miles	7 5
Greater then 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: 12/495 Inc

Date: 4/24/4/

NOV 06 1990

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

	A	8
WASTE CHARACTERISTICS	Suspected Release	Na Suspected
14. A. If you have identified ANY Primary Targets for surface water (pages 12, 14, or 15), assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part 8 of this factor.	. x3 er 111	
 If you nave NOT identified any Primary Targets for surface water, assign the waste characteristics score calculated on page 4. 	.:-30.32, er (el	18
WC =		18

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 12)	Targets (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Threet Score LR # T # WC / 82.500
Drinking Water	500	5	18	
Human Food Chain	500	210	18	23
Environmental	500	25	18	3

SURFACE WATER PATHWAY SCORE

(Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

Site Name: F/495 70C Date: 4/24/9/

PA TABLE 2: VALUES FOR SECONDARY GROUND WATER TARGET POPULATIONS

PA Table 2a: Non-Karst Aquifers

		Nearest			Рор	ulation Se	rved by W	laus Within	n Distança	Category	 /		
Distance	İ	(choose	10	11 10	31 10	101°	301 (*	1,001 to	1,001 10	10,001	30,001 to	100,001	Population
from Site	Population	highest)	10	30	100	300	1.000	3.000	10,000	30,000	100.000	300,000	Value
O to % mile	0	20	í	2	5	16	52	163	521	1,633	5,214	16,325	0
> 1/2 to 1/2 mile	4	©	0	1	3	10	32	101	323	1,012	3,233	10,121	
> ½ to 1 mile	13,014	9	1	1	2	6	17	52	167	(522)	1,668	5,224	522
>1 to 2 miles	51,998	5	1	1	1	ą	9	29	94	294	939	2,938	939
>2 to 3 miles	73,297	3	1	1	1	2	7	21	68	212	679	2,122	678
>3 to 4 miles	36,004	2	1	1	1	1	4	13	42	131	(11)	1,306	417
	Nearest Well =	18									S	core =	2557

PA Table 2b: Karst Aquifers

		Nearest			Pop	ulation Se	rved by U	leks With	n Distance	Category	,		
Distance from Site	Population	(use 20 for karst)	1 10	11 10 30	31 to 100	101 to 300	301 to 1.000	1,001 to 3,000	3.001 to 10.000	10,001 to 30,000	30,001 (* 100,000	100,001 to 300,000	Population Value
O to % mile		20	1	2	5	16	52	163	521	1,633	5,214	16,325	
> ¼ to ½ mile		20	1	١ .	3	10	32	101	323	1,012	3,233	10,121	
> % to 1 mile		20	1	1	3	8	26	82	261	816	2,607	8,162	
>1 to 2 miles	,	20	1	1	3	8	26	82	261	816	2,607	8,162	
> 2 to 3 miles		20	1	1	3	8	26	82	261	816	2,607	8,162	
>3 to 4 miles		20	1	11	3	8	26	82	261	816	2,607	8,162	
	Nearest Well =			•							5	gcore =	

Site Name: Flags Inc Date: 4/2/9/

PA TABLE 3: VALUES FOR SECONDARY SURFACE WATER TARGET POPULATIONS

Surface Water		Nearest				Population	Served b	v Intakes	Within Flo	w Catago	Ŋ			
Body Flow	Ĭ	Inleke		31	101	301	1,001	1,001	10,801	30,601	100,001	300,001	1,000,001	
Characteristics (see PA Table 4)	Population	(choose highest)	. 30	100	100	1.000	J. 000	10.000	10 30,000	100, 000	10 300,000	1.000.000	1 000 000	Population Value
< 10 cle		20	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	0
10 to 100 cfs		2	1	1	2	6	16	52	163	521	1,633	5,214	16,325	0
> 100 to 1,000 cts		1	٥	٥	1	1	2	5	16	52	163	521	1,633	0
> 1,000 to 10,000 cfs		o	o	0	o	o	1	1	2	6	16	62	163	0
> 10,000 cls of Great Lakes		o	0	0	0	0	0	o	1	1	2	5	16	
3-mile Mixing Zone	D	10	1	3		26	82	261	816	2,607	8,162	26,068	81,663	0
Neare	st Intake –	0										s	core =	0

PA TABLE 4: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH DILUTION WEIGHTS FOR SECONDARY SURFACE WATER SENSITIVE ENVIRONMENTS

Type of Su	face Water Body	Dilution		
Water Body Type	OR Flow Characteristics	Weight		
minimal stream	Now Jess than 10 cfs	1		
smail to moderate stream	flow 10 to 100 cfs	01		
moderate to large atream	flow greater than 100 to 1,000 cts	N/A		
large atreum to river	flow greater than 1,000 to 10,000 cfs	N/A		
large river	flow greater than 10,000 cfs	N/A		
to anos gnixim elim E users to emeats gniwoII seiup	flow 10 cts of Greats:	N/A		
constal tidal water (harbors, sounds, bays, etc.), ocean, or Great Lakes	N/A	N/A		

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: Flags In C Date: 4/24/91

N	I	M	ſì		10	an
IJ	u		1:	. :	10	71

SOIL EXPOSURE PATHWAY SCORESHEET

		Pathway Characteristics				
		oft of areas of suspected contamination	on?	Yes	No	
	Do any people attend school or day	care on or within 200 ft of areas				-
	of suspected contamination? Is the facility active? Yes N	if yes, estimate the number of	6	Yes	No	
	To the recently dealer 1 es	ii yes, estimate the number of	- WOIK			
			_	A	8	
INCIP	OOD OF EXPOSURE			Suspected	No Suspected Contamination	References
CINELITY	SOD OF EXPOSURE	·	-	. 169	Contamination	NOTOTOTIC 83
	ECTED CONTAMINATION: Surficial		_		2 11-2 1-1-2	
A SCOI	re of 550 is assigned.	ŲĒ		5 50		
					<u> </u>	
RESIDEN	T POPULATION THREAT TAR	GETS				
					St. Au	
1	EENT POPULATION: Determine the is ending school or day care on or with	number of people occupying residences	S			
	mination (see Soil Exposure Pathway			570		
		57 people x 10	o = L		in and	
3 05610	SENT INDRADUAL . If you have idea	nified any Resident Population (Factor a	21	50	1	
	a score of 50; otherwise, assign a		-"	50	ý.	
	_		. [(16, 10, 6, - 0)		
	KEHS: Assign a score from the follo ers at the facility and nearby facilitie	wing table based on the total number (or			
1			-			
	Number of Workers	Scare	l		1 700 10 61 7 2 4 4 6 80 2 4 4 6 80 2 4 6 7 7 8	
	1 to 100	5	1	.5		
	101 to 1.000	10				1
	> 1.000	15			8.488	
5. TERR	ESTRIAL SENSITIVE ENVIRONMENT	rs: Assign a value from PA Table 7	1			
		that is located on an area of suspected	ed		9 8 8 8 30 1970	
conta	minations	<u> </u>				
Ì	Terrestrial Sensitive Environment	Type Value				
	N/A					1
		8	I	0		1
		34	_	199		1
6. RESC	OURCES: A score of 5 is assigned.	·		5		
<u> </u>				63.0	,	7
			T =	630		
WASTE	CHARACTERISTICS		·			_
	***			(100, 32, er 10)		
7. Assi	gn the waste characteristics score of	alculated on page 4.	/C =	18		<u>}</u>
L		S 17-50				-
	ius 2001 - 1001 - 1001 - 100	ORE: LE x T x WC		(44,44)	A CONTRACTOR OF THE PARTY OF	
RESIDE	INT POPULATION THREAT SC	82,500		75	. 6	
		02.300		<u> </u>		_
NEARE	Y POPULATION THREAT SCO	RE:			2	
Assign a	score of 2					
				(44,000	•	7
	XPOSURE PATHWAY SCORE:			77	. 6	
	nt Population Threat + Nearby			<u> </u>	· U	

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE Site Name: Fluss Inc. Date: 4/24/91

NOV 0 8 1990

AIR PATHWAY SCOR

O 1000 CORESHEET			
Do you suspect a release (see Air Pathway Criteria List, page 21)?			<u></u>
Distance to the nearest individual:	Ye:		
	Α	В	,
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected Release	Reference
 SUSPECTED RELEASE: If you suspect a release to air (see page 21), assign a score of 550, and use only column A for this pathway. 	i 3 5 G 8	1 1	
 NO SUSPECTED RELEASE: If you do not suspect a release to air, assign a score of 500, and use only column 8 for this pathway. 		500	
TARGETS LR =		500	
3. PRIMARY TARGET POPULATION: Determine the number of people subject to exposure from a release of hazardous substances through the air (see Air Pathway Criteria List, page 21).		2 (S.). (1.47) (1.47) (1.47) (1.47) (1.47) (1.47)	
4. SECONDARY TARGET POPULATION: Determine the number of people within the 4-mile target distance limit, and assign the total population score from PA Table 8.		123	
 NEAREST INDIVIDUAL: If you have identified any Primary Targets for the air pathway, assign a score of 50; otherwise, assign the highest Nearest Individual score from PA Table 8. 	(\$0,20,7,2,1, æ 0)	20	
6. PRIMARY SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (PA Table 5) and wetland acreage values (PA Table 9) for environments subject to exposure from air hazardous substances (see Air Pathway Criteria List, page 21). Sensitive Environment Type Value Sum =			
7. SECONDARY SENSITIVE ENVIRONMENTS: Use PA Table 10 to determine the score for secondary sensitive environments.		0.1	
8. RESOURCES: A score of 5 is assigned.	: 4 5	5 5	
T =		148	
 A. If you have identified any Primary Targets for the air pathway, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part 8 of this factor. 	(1 00 er 32)		
If you have NOT identified any Primary Targets for the air pathway, assign the waste characteristics score calculated on page 4.	(109,33, ar 181	(100.33. a 161	
WC =		18	
AIR PATHWAY SCORE: LR x T x WC	(militares to o sin	Distribution and 1 (200)	

82,500

Site Name: 1=1mgs Znc Date: 4/24/91

PA TABLE 8: VALUES FOR SECONDARY AIR TARGET POPULATIONS

				. :::		apulation	Within Di	stance Cal	tagory		······································	······································	······································	I		
Distance from Site	Population	Population	Individual (choose highest)	1 10	11 10 30	31 to 100	101 10 300	301 40 1.000	1,001 10 3,000	2,001 to 10,000	10,001 10 30,000	30,001 (o 100,000	100,001 to 300,000	300,001 to	1,000,001 te	Population Value
Onsite	3	10	σ	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	\	
>O to % mile	1,210	30	1	1	1	4	13	①	130	408	1,303	4,081	13,034	40,811	41	
> K to K mile	2,022	2	٥	٥	1	1	3	③	28	88	282	882	2,815	8.815	9	
% to 1 mile	11,239	,	٥	Ò	o	1	,	3	8	26	83	261	834	2,612	26	
1 to 2 miles	41,866	ρ	٥	٥	0	0	1	1	3	8	1	83	266	833	27	
2 to 3 miles	65,961	٥	٥	o	0	0	ı	1	, [4	12	38	120	376	12	
3 to 4 miles	76,653	ο	-0	0	0	0	0	1	1	2	0	23	73	229	7	
Nearest	Individual -	20											S	core =	123	

PA TABLE 9: AIR PATHWAY VALUES FOR WETLAND AREA

Medical Area	staned Value
Lose then 1 acre	0
1 to 50 acres	25
Greater than 50 to 100 acres	76
Greater than 100 to 150 acres	125
Greater than 150 to 200 acres	175
Greater than 200 to 300 acres	250
Greater than 300 to 400 acres	350
Greater than 400 to 500 acres	450
Greater than 500 acres	500

PA TABLE 10: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY SECONDARY SENSITIVE ENVIRONMENTS

<u> Christian</u>	Oktoore Visited	Sensitive Environment Type and Yelve from PA Table 5 or 9)	Product
Onsite	0.10	x	
		и	
		x	
0-1/4 mi	0.025	x	
		и	
		X	
1/4·1/2mi	0.0054	, <i>25</i>	0.135
	J	X	
		ж .	
		Total Environments Score =	0.135

DRAFT

CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: Flags In C Date: 4/24/91

NOV 06 1990

PA TABLE 1: WASTE CHARACTERISTICS (WC) SCORES

PA Table 1a: WC Scores for Single Source Sites and Formulas for Multiple Source Sites

T		SINGLE	SINGLE SOURCE SITES (assigned WC scores)					
R	SOURCE TYPE	WC = 18	WC = 32	WC = 100	Formula for Assigning Source WQ Values			
12mC16200	N/A	≤100 lbs	>100 to 10,000 lbs	> 10,000 lbs	/bs ÷ 1			
Ant-mot-mma	N/A	≤500,000 lbs	> 500,000 to 50 million lbs	>50 million lbs	lbs + 5,000			
	Landfill	≤6.75 million ft ² ≤250,000 yd ²	> 6.75 million ft ³ to 675 million ft ³ > 250,000 to 25 million ya ³	>675 million ft ² >25 million yd ²	fr + 67.500 ya ³ + 2.500			
	Surface impoundment	≤6.750 ft² ≤250 yd²	> 6,750 ft ³ to 675,000 ft ³ > 250 to 25,000 yd ³	> 675,000 ft ³ > 25,000 yd ³	ft ³ + 67.5 yd ³ + 2.5			
0	Drums	≤1,000 drums	>1,000 to 100,000 drums	> 100,000 drums	drums ÷ 10			
U M	Tanks and non- drum containers	≤50,000 gallone	>50,000 to 5 million gallone	>5 million gallons	gallons — 500			
6	Contaminated soil	≤6.75 million (r² ≤250,000 yd³	> 6.75 million ft ³ to 675 million ft ³ > 250,000 to 25 million yd ³	> 675 million ft ³ > 25 million ya ³	ft ² + 67,500 ya ³ + 2,500			
	Pile	≤6.750 ft ³ ≤250 vd ³	>6.750 ft ³ to 675,000 ft ³ >250 to 25,000 yd ³	> 675.000 ft ³ > 25.000 yd ³	$fr^3 + 67.5$ $ya^3 + 2.5$			
	Landfill	≤340,000 ft ² ≤7.8 acres	>340,000 to 34 million ft ² >7.8 to 780 acres	>34 million ft ² >780 acres	fr + 3,400 acres + 0.078			
A	Surface impoundment	≤1,300 ft² ≤0.029 acres	>1,300 to 130,000 ft ³ >0.029 to 2.9 scres	>130,000 ft ² >2.9 acres	fr + 13 acres + 0.00029			
REA	Contaminated soil	≤3.4 million ft² ≤78 ecres	>3.4 million to 340 million ft ² >78 to 7,800 scres	>340 million ft ² >7,800 acres	ft + 34,000 acres - 0.78			
	Pile*	≤1,300 ft² ≤0.029 acres	>1,300 to 130,000 ft ³ >0.029 to 2.9 scres	>130,000 ft ² >2.9 scres	fr ² + 13 acres + 0.00029			
	Land treatment	≤27,000 ft² ≤0.82 scree	> 27,000 to 2.7 million ft ² > 0.62 to 62 scree	> 2.7 million ft ² > 62 acres	ft + 270 acres = 0.0062			

¹ ton = 2,000 lbs = 1 yd^3 = 4 drums = 200 gallons

PA Table 1b: WC Scores for Multiple Source Sites

WQ Total	WC Seere
>0 to 100	(18)
> 100 to 10,000	32
> 10,000	100

^{*} Use area of land surface under pile, not surface area of pile.

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE NOV 0 5 1990

Site Name: Flags Inc Date: 4/24/91

GROUND WATER PATHWAY SCORESHE	: T	,
Do you suspect a roles Pathway Characteristics		
Do you suspect a release (see Ground Water Pathway Criteria List, page) Is the site located in karst terrain? Depth to aquifer:	7)? Ye	
Distance to the nearest drinking-water well:		2,000 t
	A	8
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected
1. SUSPECTED RELEASE: If you suspect a release to ground water (see page 7), assign a score of 550, and use only column A for this pathway.	550	Release
 NO SUSPECTED RELEASE: If you do not suspect a release to ground water, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Use only column 8 for this pathway. 	: :: :	200 @ 3009
TARGETS	550	
3. PRIMARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you suspect have been exposed to hazardous substances from the site (see Ground Water Pathway Criteria List, page 7).	0	
4. SECONDARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you do NOT suspect have been exposed to hazardous substances from the site, and assign the total population score from PA Table 2.	15	
Are any wells part of a blended system? Yes No If yes, attach a page to show apportionment calculations.	2,557	
5. NEAREST WELL: If you have identified any Primary Targets for ground water, assign a score of 50; otherwise, assign the highest Nearest Well score from PA Table 2. If no drinking-water wells exist within 4 miles, assign a score of zero	18.30.10.0 5.12. = 0	.20 10 0 5 3 2 W Us
a designated WHPA is within % mile of the site; assign 5 if from % to 4 miles	:20. \$. • as	10 t = ut
7. RESOURCES: A score of 5 is assigned.	и 5	" 5
WASTE CHARACTERISTICS	2,580	
 A. If you have identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is. GREATER; do not evaluate part 8 of this factor. 	(100 - 12)	
 If you have NOT identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4. 	18	1100 32 · · ·
WC -	18	
CROUND MARTIN CO.		
GROUND WATER PATHWAY SCORE: LR x T x WC	/ A =	

WEN Apportionment Calculations

Bellmank wo serves 9,522 people with 4 wells

9,522:4= 2,380 people per well. I domestic well within I mile of the

site serves approximately 3.8 people wells located 0-2 miles from the side.

Prooklawn wo serves 2,520 people with 3 wells. 2,520+3=840 people per well wells located 2-3 miles from the site.

Camden city wo serves 50,000 people approx with 14 wells. However only well no 11 is within 4 miles of the site . 50,000 + 14 = 3,571 people served by this well. well is located 3-4 miles from the Site

Gloucester City wo serves 13,250 people with 4 wells. 13,250;4=3312 people per well. Wells located 2-3 miles from site.

Haddonfield Boro WD serves 12, 257 people with 4 wells. 12,257;4=3064 people por well. wells located 3-4 miles from site.

Collings wood Boro WD serves 21,000 people with 7 wells. 21,000 = 7 = 3,000

People per well. wells located 2-4 miles from site

Haddon Twp WD serves 12,000 people with 4 wells. 12,000 = 4 = 3,000 feople

per well wells located 2-3 miles from site.

NJ American we-Haddon Hts serves 33,014 people with 6 wells. 33,014:6 = 5,502 people per well. wells located 1-2 miles from site

Well Apportionment Calculations (cont'o)

NJ American wc - western Division serves 49,731 people with 7 wells 49,731:7 = 7104 people per well. Wells are located 1-3 miles from the site

west-ville Buro was serves 7,000 people with 3 wells. 7,000 ÷ 3 = 2,333 people per well. wells are located 2-3 miles from the site.

NJ Americal WC Serves 40,242 people with 12 wells in the Somerdale area only Somerdale well # 14 is within 4 miles of the site. 40,242+12 = 3,353 people scrued by this well,

Domestic well calculations

0-1 mile 1 well serves 3.8 people approximately

1-2 miles 4 wells serves 15.2 people approximately

2-3 miles O well's

3-4 miles 3 vells serves 11.4 people approximately

Domestic wells are not blended.

DRAFT NOV 0 5 1390 CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: Flags Inc Date: 4/04/91

SITE SCORE CALCULATION

,	S	S ²
GROUND WATER PATHWAY SCORE (S,):	100	10,000
SURFACE WATER PATHWAY SCORE (S):	27	729
SOIL EXPOSURE PATHWAY SCORE (S.):	77.6 = 78	6,084
AIR PATHWAY SCORE (S,):	16	256
19,000 6,084 256 SITE SCORE: 17,069 17,069:4=4267.25 \(\frac{4}{4}\)267.25 =	$\sqrt{\frac{S_{gw}^{2} + S_{sw}^{2} + S_{sw}^{2} + S_{a}^{2}}{4}}$ = 65.32	= 65.32